Academic Year of 2014 Admission to the Master's Program Department of Intelligence Science and Technology Graduate School of Informatics, Kyoto University (Fundamentals of Informatics) (International Course)

13:30 - 15:00, February 12, 2014

NOTES

- 1. This is the Question Booklet in 3 pages including this front cover.
- 2. Do not open the booklet until you are instructed to start.
- 3. After start, check the number of pages and notify proctors (professors) immediately if you find missing pages or unclear printings.
- 4. This booklet has 2 questions written in English. Solve all questions.
- 5. Write your answers in English, unless specified otherwise.
- 6. Read carefully the notes on the Answer Sheets as well.

Master's	Fundamentals of	Question	E 1
Program	Informatics	Number	F-1

Q.1 Let G = (V, E) be an undirected graph, where V denotes a set of vertices whose labels are indexed by integers (0, ..., n), and E denotes a set of edges. Consider the following pseudo code function of a graph traversal algorithm in (a), where i, j are indices of vertices, *visited*[j] is an element of an array, which states if the corresponding vertex has been visited or not, all the elements are initialized as false. For a certain graph G', abc(0) starting from vertex 0 has a following trace in (b).

- **1.1** Draw the graph G'.
- 1.2 Function *abc* implements a well-known traversal algorithm. What is its name?
- **1.3** Provide adjacency sets in G'.
- 1.4 Provide the trace of abc(3) for the following graph. Assume that adjacent vertices in each adjacency set are listed in ascending order.

Q.2 In computing, Sign-Magnitude, 1's complement and 2's complement are used to represent positive/negative numbers in binary number systems.

- **2.1** Convert two decimal numbers 26 and -117 to binary using 8-bit Sign-Magnitude, 1's complement and 2's complement representations, respectively.
- **2.2** What disadvantages does Sign-Magnitude representation have? What is the advantage of 2's complement representation over 1's complement?
- **2.3** What is the procedure for converting a decimal number to 2's complement representation using 1's complement?
- **2.4** Provide another idea of converting a decimal number to 2's complement representation without using 1's complement. Please use -117 as an example.

Master's	Fundamentals	of
Program	Informatics	

QuestionF - 2NumberImage: Second s
--

Q. 1 The entropy of a random variable X taking values in a finite set \mathcal{X} is a function of the probabilities $\{P(X = x), x \in \mathcal{X}\}$, defined as $H(X) := -\sum_{x \in \mathcal{X}} P(X = x) \log P(X = x)$. We consider in the following such a finite set \mathcal{X} as well as two random variables X, Y taking values in that set.

- 1. Describe in one sentence what the entropy H(X) measures. Provide examples of random variables with low and high entropy.
- 2. What is the definition of the conditional entropy H(X|Y)? Provide a formula that uses the conditional probabilities P(X = x|Y = y) and probabilities P(Y = y) for $x, y \in \mathcal{X}$. Show that $H(X|Y) \ge 0$.
- 3. We write H(X, Y) for the entropy of (X, Y), the joint random variable formed by X and Y that takes values in the finite set $\mathcal{X} \times \mathcal{X}$. Prove the chain rule formula H(X, Y) = H(X|Y) + H(Y).
- 4. A twice differentiable real-valued function defined on an interval of \mathbb{R} is convex if its second order derivative is non-negative everywhere on that interval. Prove that the function f defined as $f(x) = -\log(x)$ for $x \in (0, \infty)$ is convex.
- 5. Given a convex function f and a real-valued random variable U taking values in the domain of f, we write $\mathbb{E}[f(U)]$ for the expectation of f(U). What is the inequality between $\mathbb{E}[f(U)]$ and $f(\mathbb{E}[U])$ that Jensen's inequality provides?
- 6. Prove that the mutual information I(X;Y) := H(X) + H(Y) H(X,Y) is symmetric and non-negative. *hint*: you may use your answers to questions 4 and 5.
- 7. Prove that $H(X,Y) \ge 2\min(H(X),H(Y))$ and $H(X,Y) \le 2\max(H(X),H(Y))$.

Suppose now that Y is a deterministic function of X, Y = g(X), where $g : \mathcal{X} \to \mathcal{X}$. Answer the questions below, either with an example or a proof that no such examples can exist.

- 8. Can you find an example of a function g such that $H(Y) \leq H(X)$?
- 9. Can you find an example of a function g such that H(Y) = H(X)?
- 10. Can you find an example of a function g such that H(Y) > H(X)?

Q. 2 Given a source taking values randomly (independently, identically distributed) in a finite alphabet, Huffman proposed a lossless compression algorithm in 1952—known as Huffman coding—which creates a variable length prefix code for the symbols in that alphabet.

- 1. What is the definition of a variable-length prefix code?
- 2. Which of the following sets of codewords could be the Huffman code for some 4 symbol source alphabet? Justify your answer.
 - (a) 01, 10, 00, 111;
 - (b) 0, 10, 110, 111;
 - (c) 1, 01, 10, 001;
 - (d) 0, 110, 111, 101.